Вернуться   Космический ветер > Точка отсчёта > Основы мироздания
Проверка слова

gramota.ru translate.google.ru
languagetool.org
Правила и навигация Регистрация Сообщество Партнёры

Основы мироздания Правила игры, описание мира и дополнительная информация

Реклама

 
 
Опции темы Опции просмотра
Старый 16.02.2017, 13:38   #4

Neuromancer

Аватар для Neuromancer / Посмотреть профиль
★ Координатор ★
Artificial Intelligence

[+]
 
Репутация: 8
 
По умолчанию Re: Оружие

ОБЩАЯ ИНФОРМАЦИЯ О КОСМИЧЕСКИХ КОРАБЛЯХ



Технические моменты общего характера:


1. Источники энергии
Силовая установка космических кораблей как правило представлена одним, или сборкой из нескольких ядерных реакторов, на кораблях массой покоя более 50 000 тонн начинают встречаться реакторы управляемого ядерного синтеза (термоядерные). В качестве способа получения энергии служат элементы Сади-Лаваля позволяющие проводить прямое преобразование тепловой энергии в электрическую с достаточно высоким КПД, но из-за их сложности и невозможности замены "на месте", при возможности, их резервируют с помощью классических генераторов типа "паровая турбина" замкнутого цикла.
Генераторы на основе антиматерии неоднократно предлагались к использованию, но из-за неисправимых конструктивных недостатков распространения не получили.
Практически все АКИ (атмосферно-космические истребители) вместо реакторов используют батареи на основе суперкондесаторов, что значительно ограничивает автономность, но позволяет уменьшить массу, размеры и стоимость отдельной машины.
В качестве вспомогательных источников энергии иногда используются солнечные батареи и РИТЭГи.

2. Защита
Пассивная защита.
Обшивка кораблей как правило рассчитана на устойчивость к мелкому космическому мусору и стандартные снаряды кинетических пушек калибром 30-50мм.
Защита от лазерного вооружения представлена широким семейством газопластиков (не все их них являются пластмассами, но это наиболее устоявшееся название) - материалов которые при нагревании (что и происходит при воздействии лазерного луча), сгорают с выделением большого количества непрозрачного газа, который в некоторой степени поглощает лазерный луч и усложняет дальнейшее отслеживание цели. Недостатком является то, что такая защита осложняет использование собственных лазеров, а так же не всегда эффективна, если спектр поглощения у газа находится далеко от длины волны лазера (для компенсации этого эффекта, как правило, используются несколько слоев газопластика с разными свойствами). Иногда используется в обшивке тяжелых АКИ, хотя эффективность остается под вопросом.
Снижение радиозаметности так же является одним из факторов пассивной защиты и достигается использованием радиопоглощающих материалов, оптимизации формы корпуса и отключения/маскировки наиболее "фонящих" систем, таких как радары дальнего действия или двигатели. Еще один способом является позиционирование корабля на фоне звезды, чтобы замаскировать его сигнатуры за ее излучением.

Активная защита.
К данной категории относятся постановщики помех, мешающие системам наведения, системы лазерного или кинетического вооружения малой мощности, занимающиеся перехватом ракет и их уничтожением, так же, их задачей является борьба с АКИ и абордажными челноками, приблизившимися на малую дистанцию.
Несколько более экзотическим решением, являются ложные цели, в том числе и полноразмерные, представляющие собой надувной "мешок" и баллоны с газом, придающим ему форму, в то время как специальное оборудование имитирует работу систем корабля.

3. Гравитационные компенсаторы
Системы отвечающие за снижение влияния перегрузок на корабль и его экипаж. Характеризуются коэффициентом компенсации, достигающим у лучших образцов 1:175 - 1:190 (перегрузка снижается в 175 или 190 раз соответственно), но в среднем находящимся на уровне 1:150.
Особенностью работы является то, что рядом с телами большой массы, такими как планеты, компенсаторы начинают резко терять эффективность: в мезосфере (50-80км над уровнем моря) планеты земных размеров и массы коэффициент компенсации упадет до 1:80, а на уровне моря составит лишь около 1:5 - 1:7.
Так же, используются для создания искусственной гравитации на кораблях и при необходимости, ценой высоких нагрузок на реактор и сами компенсаторы - могут обеспечить снижение массы корабля, для аварийной посадки, или посадки на неподходящей местности (доступно только кораблям массой покоя менее 35 тысяч тонн).


4. Системы вооружения
Наиболее распространенными типами являются ракеты и энергетическое вооружение, в то время как электромагнитные ускорители (маломощные - "рельсовые пушки" и высокомощные ускорители частиц) представлены в меньшей степени. Баллистическое вооружение, пушки классической схемы, используются лишь на сверхмалых расстояниях (менее 30-40км) из-за низкой начальной скорости снаряда, и представлены в основном скорострельными пушками малого калибра.

Лазеры.
Излучатели различной мощности и принципа работы, общими для которых являются такие черты как высокая дальнобойность, высокая точность, практически мгновенное поражение цели и околонулевое влияние помех на траекторию. Общим недостатком является рассеивание луча на больших расстояниях (на расстоянии в 3-4 световых секунды "пятно" лазера может иметь площадь в несколько квадратных километров, и вместо сквозной дыры в корпусе с детонационным кипением металла лишь "засветит" оптические сенсоры).

Ракеты.
Не слишком значительно изменившиеся с момента своего появления средства для доставки боеголовки к цели, использующие высокоэффективные химические двигатели, позволяющие достигать скоростей порядка 70-90 км/с (для тяжелых ракет). Как правило, когда речь идет о количестве пусковых установок на корабле, имеются ввиду стандартизованные контейнеры, способных вмещать как одну так и несколько ракет. Так же стоит учесть множество типов боеголовок, начиная от "одиночная боеголовка с фугасной боевой частью на основе химической взрывчатки" и заканчивая "разделяющейся головной частью с блоками индивидуального наведения", а так же более экзотическими, например генераторами ЭМ-импульса на основе ударно-волнового излучателя.
Несмотря на относительно невысокую в масштабах космоса скорость полета, остаются актуальными из-за возможности массового запуска и высокой эффективности ядерной БЧ. Могут использоваться в "ракетной волне", когда при одновременном запуске большого количества ракет, ПРО противника оказывается неспособна перехватить все цели, а близкий подрыв оставляет корабль полуслепым из-за выжженных тепловым излучением датчиков, что приводит к резкому падению эффективности систем ПРО.
В условиях атмосферы используются обычные боеголовки ракет, соответствующие "Аркадским соглашениям".

Электромагнитные ускорители.
Делятся на две группы: маломощные "рельсовые пушки" и ускорители частиц, имеющие в десятки раз большую мощность. Промежуточная ниша остается пустой из-за конструктивных ограничений рельсовых пушек и низкой целесообразности маломощных ускорителей частиц и занята лазерными излучателями.
В обоих случаях, используется "снаряд" разгоняемый электрическим полем, с его финальной корректировкой магнитным, для более точного наведения на цель. Различается природа снаряда и начальные скорости - в случае "рельсовых пушек" используется стержень из ферромагнитного сплава в керамическом кожухе (что позволит применять его в атмосфере, без расплавления снаряда от трения о воздух), и скорости редко превышают 15-20 км/с для применения в атмосфере "тяжелых" снарядов и 250-300 км/с для используемых в вакууме "легких". Энергетика снаряда редко превышает 50-60МДж (в 2-2.5 раза выше, чем у современных танковых пушек)
Ускоритель частиц использует пучок простых (одноатомных) ионов, разгоняемых до скоростей в 25-30% от световой, и имеющих огромную кинетическую энергию - как правило, мощность ускорителей частиц начинается от 400-450 мегаджоулей, что позволяет одним попадание вывести из строя или уничтожить корабль среднего тоннажа (порядка 10-15 тысяч тонн) или нанести тяжелейшие повреждения более крупным.
Недостатками является длительная перезарядка, высокий износ ускоряющих электродов и конденсаторных систем, а так же высокая стоимость и сложность обслуживания и ремонта. "Уникальной" проблемой ускорителей частиц является необходимость их экранирования от ионизирующего излучения, испускаемого разгоняемыми частицами.

5. Системы жизнеобеспечения (СЖО)
Делятся на две группы: замкнутого цикла и разомкнутого.
СЖО замкнутого цикла полагаются на максимальную возобновимость ресурсов - одноклеточные водоросли в баках с водой, восстанавливающие кислород из углекислого газа и используемые в пищу, гидропонные фермы, использующие отходы в качестве удобрений, и другие решения нацеленные на многократное восстановление ценных ресурсов, таких как вода, воздух и пища. Вместе с тем, добиться абсолютно замкнутой системы можно лишь в достаточно большом объеме, и большинство кораблей с замкнутой СЖО лишь увеличивают за ее счет свою автономность, хотя и весьма значительно.
СЖО разомкнутого цикла как правило использует невозобновимые ресурсы, например химические регенераторы воздуха и сублимированные продукты. Позволяет значительно сэкономить место, хотя и ценой автономности.

6.Системы спасения экипажа
Представлены катапультами пилотов (исключительно на АКИ, подразумевается, что пилот уже в скафандре), аварийными скафандрами и спасательными капсулами. Разница между последними в сроках поддержания жизни и возможности входа в атмосферу. Используются параллельно, в зависимости от наличия места и задач корабля - несмотря на все плюсы спасательных капсул, они занимают немало места, и весят на несколько порядков больше, чем скафандры для того же количества человек. В современных моделях, запас автономности скафандров может достигать двух-трех дней, у капсул - до пары недель. К явным преимуществам капсул можно отнести возможность спуска в атмосферу и наличие на их борту запаса продуктов и достаточно универсального набора выживания.

7. Абордажные и спасательные "рукава"
Появившаяся еще во времена подводных лодок концепция, сохранившая актуальность и в эпоху космических полетов. "рукав" представляет собой группу телескопических штанг, длиной около 50-80 метров в разложенном состоянии и около 7-8 в сложенном, которые формируют коридор с стенами из армированного полимера между кораблями, фиксирующийся с помощью нескольких буров-якорей, под разными углами всверливающихся в обшивку и герметизируемый с помощью быстрозастывающей пены.
В некоторых моделях после этого включаются кольцевые резаки, самостоятельно вырезающие кусок обшивки, для попадания внутрь, в некоторых это делается силами группы техников.
Существует "абордажная" разновидность, где вскрытие обшивки осуществляется с помощью направленного взрыва, после чего надвигается последняя секция "рукава" и производится герметизация. Таким образом, можно сэкономить время, хотя и ценой разрушений на корабле-жертве.



ТЕХНОЛОГИИ МЕЖЗВЁЗДНЫХ ПЕРЕЛЁТОВ

Космические перелеты в секторах СВЦ и СССР совершаются либо с помощью подпространственных врат, либо с помощью линз-отражателей.

В Независимом секторе допускаются полеты на космических кораблях с другими технологиями, при условии, что эти технологии имеют под собой минимальное научное обоснование.

Для управления кораблем и поддержания его работоспособности, особенно если его миссия предполагает работу в малоисследованных или неисследованных участках галактики, в абсолютном большинстве случаев необходим хотя-бы минимальный экипаж. Тем не менее, в особых случаях одиночная работа с заменой большей части экипажа автоматикой все-таки возможна, но это ни в коем случае не может подаваться, как стандартная практика (где бы то ни было), требует дополнительного обоснования, и персонаж, путешествующий таким образом, должен быть готов столкнуться со всеми тяготами такого рода путешествий, включая вероятность трудноустранимых технических неполадок корабля и ограничение времени автономной работы из-за очень ограниченных возможностей полевого техобслуживания.

ПЕРЕМЕЩЕНИЕ С ПОМОЩЬЮ ПОДПРОСТРАНСТВА

Данный способ перемещения базируется на существовании, расположенного параллельно пространству нашей Вселенной, подпространства, в котором расстояние сокращается за счет сильно искривлённой геометрии.
Вход в подпространство возможен двумя способами.

1. С помощью специальных линз-отражателей, установленных на корабле. Эти линзы генерируют импульс, способный открыть вход в подпространство и выход из него в любой точке космоса. Получают энергию от двигателей корабля. При отсутствии топлива или повреждении линз вход в подпространство и выход из него невозможен.

2. С помощью специальных «ворот-ретрансляторов», установленных на входе и на выходе подпространственного тоннеля, связывающего между собой две точки космоса. Такими коридорами может воспользоваться любой космический корабль, даже не обладающий линзами-отражателей.
Некоторые ворота активируются автоматически, после пролета через них космического корабля. Для активации других может потребоваться дистанционное управление и специальный код.
Перелеты с помощью коридоров позволяют экономить топливо, а потому пользуются популярностью и у кораблей с линзами-отражателями.
Недостатками такого перемещения, во-первых, является ограниченное количество коридоров, связывающих далеко не все галактики и системы. Во-вторых, в случае повреждения входных или выходных ворот, влетевший в коридор корабль, необорудованный линзами-отражателями, рискует остаться в нем навсегда, потому что не сможет найти выход.

Особенности
Во время полета в подпространстве на корабле сохраняется привычный ход времени и действуют все законы физики. Внешние системы корабля позволяют определить направление движения, но не дают возможности определить местоположение корабля в привычном пространстве. Именно поэтому точка выхода из подпространства рассчитывается кораблем перед входом в него. Однако эти расчеты носят приблизительный характер из неодинаковой геометрии искажения, а потому существует вероятность перелететь или не долететь до нужной точки. Большую роль здесь играет опыт пилотов и совершенство системы навигации.
Также дополнительная опасность существует при выходе из подпространства вблизи звезд. Сила гравитации способна удлинить и притянуть к себе подпространственный коридор в момент его открытия, и корабль рискует вылететь прямо в звезду.

Зная точку входа корабля в подпространство, теоретически возможно вычислить точку его выхода, уловив остаточное излучение, возникающее при открытии прорехи в пространстве. На практике, официально оборудование, необходимое для подобных манипуляций, не запатентовано. Неофициально, существует несколько образцов ручной сборки, но точный принцип их работы не ясен, а разработчик либо умер и забрал секрет с собой в могилу, либо очень серьезно озаботился своей анонимностью. Предполагается, что один из приборов находится в пользовании мафии кэтлордов, но достоверной информации по этому поводу не установлено.



ЧЕРВОТОЧИНЫ

Топологическая особенность, представляющая собой «туннель» либо во времени, либо в пространстве, либо во времени и пространстве одновременно. Червоточины могут соединять разные Вселенные, разные точки в одной Вселенной и даже черные дыры вместе.
От обычной черной дыры червоточина отличается, во-первых, отсутствием горизонта событий. Во-вторых, материя не может выйти за пределы червоточины, но свет может. То есть, если смотреть на вход в червоточину, то можно увидеть световое кольцо с яркостью, возрастающей к внешнему диаметру и свет других галактик по ту сторону червоточины.
Червоточины крайне нестабильны и недолговечны, к тому же невозможно предсказать, куда именно они выведут. Более того, излучение, проходящее сквозь них, имеет сильное смещение в синий спектр, то есть исключительно высокоэнергетично и просто убийственно для живых организмов. А потому для перемещений, на сегодняшний день, червоточины не используются. Однако, исключать вероятность того, что какой-либо корабль окажется затянут в подобный «туннель» и выброшен в совершенно другой Вселенной, нельзя.

Понятие червоточин введено для адаптации классических фантастических сюжетов, но не для массовой регистрации персонажей из других галактик!




ТЕРМОЯДЕРНЫЙ ДВИГАТЕЛЬ

Ракетный двигатель для космических полётов, в котором для создания тяги используются продукты управляемой термоядерной реакции. Основной частью двигателя является реактор, в котором происходит управляемая реакция термоядерного синтеза. Реактор представляет собой полую «камеру» цилиндрической формы, открытую с одной стороны. Длина камеры около 20-ти метров, диаметр - 3 метра. Термоядерное топливо - предварительно нагретая смесь топливных компонентов - подаётся в камеру реактора, где и происходит постоянная реакция синтеза. Генераторы магнитных полей, окружающие активную зону, создают в камере реактора поля большой мощности, удерживающие высокотемпературную термоядерную плазму от соприкосновения с конструкцией реактора и стабилизируют происходящие в ней процессы. Полученная плазма, направляемая магнитными управляющими системами, истекает из реактора через сопла, создавая реактивную тягу.

Особенности
Средняя скорость данного двигателя составляет около 0,134 парсека/год (946 млрд км/год или же 108 млн км/час). Подобная скорость позволит кораблю долететь от Земли до Луны примерно за 20 минут, от Земли до Марса - примерно за 2 часа, от Земли до Плутона - примерно за 55 часов, от Земли до альфы Центавра - примерно за 43 года.
Во время межзвездных перелетов экипаж находится в криосне, а управление корабля осуществляется автоматическими системами.
Главным недостатком подобной технологии является то, что по сути двигатель представляет собой ядерный реактор. И его повреждения или сбои в работе могут привести к ядерному взрыву, который уничтожит весь корабль.

В каких отыгрышах использовалась или будет использоваться
Термоядерный двигатель установлен на кораблях корпорации "Ковчег", отправившей свои корабли на исследования планет Независимого сектора. Данная корпорация располагается на одной далекой, находящейся на расстоянии нескольких световых лет от Независимого сектора, планете земного типа. Уровень развития этой планеты немного превышает современный земной.



ТО, ЧЕГО У НАС НЕТ:


- Энергетические щиты. Их существование невозможно в настоящем из-за отсутствия достаточно мощных источников питания, и в обозримом будущем так же считается невозможным (необходимо увеличение энерговооруженности кораблей на несколько порядков).

- На текущий момент не существует сколько-то серийный кораблей способных вести активный бой, и превышающих 450-550м длины, из-за нагрузок на корпус возникающих при маневрировании и грозящих переломить корабль пополам.
Пошедших в серию кораблей, длиной более полутора километров так же не существует, а образцы близких размеров являются сверхтяжелыми транспортами.
Единичные экземпляры, представителем которых является корабль-планетопроходец "Тень" (порядка 1300м длины) это исключение, и согласуются в индивидуальном порядке.

- "Звезды смерти". Наиболее мощное оружие, используемое в космосе это ракеты с ядерными и термоядерными боеголовками, мощность которых редко превышает единиц и в исключительных случаях достигает нескольких десятков мегатонн.
__________________
[table layout=fixed width=100%]
[tr][td width=110px]Поддержите нас!
[/td]
[td]Для того, чтобы получить возможность задать вопрос, не регистрируясь на форуме, зайдите под ником Netrunner с паролем 000 [три нуля] или воспользуйтесь кнопкой "Гость".

Правила | Сюжеты | Поиск! | Пошук! | ЧаВо и гостевая | Помочь развитию форума[/td][/tr][/table]
Neuromancer вне форума   ''

 


Реклама

Здесь присутствуют: 1 (пользователей: 0 , гостей: 1)
 

Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Вкл.

Быстрый переход


Текущее время: 01:28. Часовой пояс GMT +3.


Puella Magi: Fiat Lux Волчьи песни CodeVein Morgana Academy Тёмный путь
Посмотреть все ссылки можно здесь.
Техподдержка: Luvilla, Зефир. Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. Перевод: zCarot
К оформлению приложили лапы Tainele и SivaKotka